Surgery for Single Ventricles

Andrew Parry

Consultant Congenital Cardiac Surgeon Department of Cardiac Surgery Bristol Royal Hospital for Children & Bristol Heart Institute United Kingdom

ACHD study day; Oct, 2019

Single Ventricle;

Too small - flow related theory of cardiac development

Too complex - cAVSD/DORV - Straddling mitral valve

Pulmonary atresia intact IVS

Flow Related Theory of Cardiac Development

Ultimate end point;

Child will be pink; nothing else

Systemic venous blood draining directly to lungs

Therefore need to keep pulmonary artery pressure as low as possible

- pulmonary artery resistance
- afterload

Therefore need to look after heart and lungs

Protect lungs

Avoid too much blood flow under too high a pressure

Natively

- too little blood

- too much blood
- balanced

What increases afterload?

Valve regurgitation Outflow obstruction Ventricular function - rhythm - function

Surgery

Repair valves

Relieve outflow tract obstruction

- resection
- VSD enlargement
- Damus/Kaye/Stansel

Damus-Kaye-Stansel operation

Three stages;	
Neonate	 too much blood flow too little blood flow balanced blood flow
Glenn	- 4 – 6 months
Fontan	- 12 – 15 kgs

Shunts

- Blalock-Taussig
- Waterston-Cooley
- Potts
- Other central shunts
- MPA to ascending aorta

A. Blalock, H. B. Taussig:

The surgical treatment of malformations of the heart in which there is pulmonary stenosis or pulmonary atresia.

The Journal of the American Medical Association, Chicago, 1945, 128: 189-202.

Classic BT shunt (Blalock-Taussig)

Modified BT shunt

Waterston and Potts shunts

Anomalous coronary artery repair	Surgery	2012-13	15	100%
Aortic root replacement (not Ross)	Surgery	2012-13	63	96.8%
Aortic valve replacement - Ross	Surgery	2012-13	61	100%
Aortic valvoplasty	Surgery	2012-13	32	100%
Aortic valvotomy	Surgery	2012-13	22	90.9%
Aortopulmonary window repair	Surgery	2012-13	9	100%
Arterial shunt	Surgery	2012-13	153	91.5%
Arterial switch (for isolated transposition)	Surgery	2012-13	150	97.3%
Arterial switch + VSD closure	Surgery	2012-13	61	95.1%
ASD repair	Surgery	2012-13	334	100%
Atrioventricular septal defect (complete) repair	Surgery	2012-13	192	99%
Atrioventricular septal defect (partial) repair	Surgery	2012-13	95	100%
Atrioventricular septal defect and tetralogy repair	Surgery	2012-13	15	100%
Bidirectional cavopulmonary shunt	Surgery	2012-13	247	98.8%
Cor triatriatum repair	Surgery	2012-13	19	94.7%
Fontan procedure	Surgery	2012-13	199	99.5%
Interrupted aortic arch repair	Surgery	2012-13	23	95.7%
Isolated coarctation repair	Surgery	2012-13	291	99%
Isolated Pulmonary artery band	Surgery	2012-13	128	95.3%
Mitral valve replacement	Surgery	2012-13	74	95.9%
Norwood procedure (Stage 1)	Surgery	2012-13	128	90.6%
PDA ligation (surgical)	Surgery	2012-13	372	97%
Pulmonary atresia VSD repair	Surgery	2012-13	46	97.8%
Pulmonary valve replacement	Surgery	2012-13	328	100%
Rastelli procedure	Surgery	2012-13	17	100%
Repair of TAPVD	Surgery	2012-13	70	94.3%
Senning or Mustard procedure	Surgery	2012-13	3	66.7%
Subvalvar aortic stenosis repair	Surgery	2012-13	167	98.8%
Supravalvar aortic stenosis repair	Surgery	2012-13	11	90.9%
Tetralogy repair	Surgery	2012-13	307	99.3%
Tetralogy with absent pulmonary valve repair	Surgery	2012-13	16	93.8%
Tricuspid valve replacement	Surgery	2012-13	40	97.5%
Truncus and interruption repair	Surgery	2012-13	1	100%
Truncus arteriosus repair	Surgery	2012-13	32	87.5%
VSD Repair	Surgery	2012-13	359	99.7%

Stenting of the *ductus arteriosus*

95.1% (72.4%) survival at 30 days

Not all ducts can be stented

- too serpiginous
- cannot access
- too big

Relatively uncontrolled flow

Norwood procedure

Long term problems;

Failing Fontan - exclude anatomical obstruction

- Fontan conversion
- protein losing enteropathy (PLE)
- ascites etc

Dysrrhythmias/Pacing issues